


New editions of this guide incorporate all material added or changed since the previous edition.
Update packages may be used between editions. Themanual printing date changes when a
new edition is printed. The contents and format of this manual are subject to change without
notice.

Generated: 9/22/2021, 8:31 PM

Rev: 3a4ade2

Part Number: VectorCAST/Analytics User's Guide for VectorCAST 2021

VectorCAST is a trademark of Vector Informatik, GmbH

© Copyright 2021, Vector Informatik, GmbH All rights reserved. No part of thematerial
protected by this copyright noticemay be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any informational storage
and retrieval system, without written permission from the copyright owner.

U.S. Government Restricted Rights

This computer software and related documentation are provided with Restricted Rights. Use,
duplication or disclosure by the Government is subject to restrictions as set forth in the
governing Rights in Technical Data and Computer Software clause of

DFARS 252.227-7015 (June 1995) and DFARS 227.7202-3(b).

Manufacturer is Vector North America, Inc. East Greenwich RI 02818, USA.

Vector Informatik reserves the right to make changes in specifications and other information
contained in this document without prior notice. Contact Vector Informatik to determine
whether such changes have beenmade.  

Third-Party copyright notices are contained in the file: 3rdPartyLicenses.txt, located in the
VectorCAST installation directory.

2



TABLE OF CONTENTS

Introduction to Analytics 5

VectorCAST/Analytics 6

Quick Start 7

Getting Started 8

Create a VectorCAST Project 8

Execute All Tests 10

Start Analytics From VectorCAST 11

Understanding the Analytics Dashboard 11
Key Metrics 12
Source Code Tree 13
Metrics Display 13
Source Code Viewer 16
Coverage Viewer 16

Close the Analytics Server 18

Running the Analytics Server 19

Running Analytics From the Command Line 20

Tracking Trends and Project History 20
Create a History Directory 21
View History Trends on the Dashboard 21
Editing History Points 21
Including a Source Archive 22

Analytics Server Options Reference 22

Configuring the Analytics Server 25

Creating a New Configuration 26
Global Settings 26
Server Group Settings 26
Filter Group Settings 26
Plugin Group Settings 27
Example Configuration File 27

Customizing the Analytics Dashboard 28

Create A Custom Dashboard 29

Dashboard File Format 30
Top-Level Settings 30

3



Dashboard Settings 30
Rows Settings 30
Widgets Settings 31

Supported Groups 33

Supported Metrics 33
StandardMetrics 33
Static Analysis Plugin Metrics 36

Color Templates 36

Adding Metrics With Plugins 40

Analytics Plugin System 41

Index 42

4



Introduction to Analytics



VECTORCAST/ANALYTICS 6

VectorCAST/Analytics
VectorCAST/Analytics provides a web-based dashboard view of software code quality and testing
completeness metrics, making it easy to understand the current state of quality and testing
completeness for a software project. This critical intelligence allows all stakeholders tomake decisions
about release readiness and process improvement.

VectorCAST/Analytics features:

> Real-Time Code Quality Metrics - Provides quantifiable data on test run vs. tests needed,
release readiness, risk areas, and hot spot identification.

> Technical Debt Identification - Identifies data on the key components of technical debt such as:
code complexity, comment density, and testing completeness.

> Test Case Quality - Reports on the quality of test cases with metrics such as: tests with
expected values but no requirements, number of requirements tested, and tests with expected
values.

> Customization - Allows customization of calculatedmetrics, as well as data presentation using a
variety of built-in graphs and tables.

> Extendable Data Connectors - Includes built-in data connectors for VectorCAST tools and is
easily extended to support any third-party data sources.

VectorCAST/Analytics works by providing user-configurable data connectors that allow key metrics
such as static analysis errors, code complexity, code coverage and testing completeness to be
captured from VectorCAST or third-party tools. These basemetrics can be combined into compound
metrics to identify hot spots in the code, such as functions with high complexity and low coverage.

Key metrics are shown in tables and treemaps, offering an initial quality assessment to identify high
value activities to improving code quality. In a treemap view, where code coverage controls the box
color and code complexity controls the box size, users quickly view where they should invest testing
and refactoring resources to get the best return on investment. Big red boxes imply highly complex
functions that are poorly tested.

Rev: 3a4ade2 VectorCAST/Analytics User's Guide for VectorCAST 2021



Quick Start



GETTING STARTED 8

Getting Started
This Quick Start chapter is intended to get you started quickly with the basic features of
VectorCAST/Analytics. Use it for a quick reference.

Before you start:Ensure that VectorCAST is installed and that the environment variable
VECTORCAST_DIR is set to the installation directory. Refer to the Interactive Tutorials for detailed
installation instructions.

The default VectorCAST/Analytics configuration supports all VectorCAST tools. Simply point the
VectorCAST Analytics server at any VectorCAST/Manage testing project or VectorCAST/Cover
coverage project and the default dashboard displays key metrics in an easy-to-understand layout.

For the purposes of this demonstration, we will create an Enterprise Testing Project using the
Enterprise Unit Testing example included with VectorCAST.

Create a VectorCAST Project
Enterprise Testing is a Test Automation Framework that sits on top of VectorCAST/C++ or
VectorCAST/Ada test environments and allows test design, execution, and reporting to be distributed
across the enterprise. The VectorCAST project supports a variety of work flows allowing for team
collaboration, testing of multiple configurations, change-based testing, andmassively parallel testing.

Enterprise Testing can import existing VectorCAST/C++ and VectorCAST/Ada test environments, or
be used to create new environments. In this section, you will take existing VectorCAST environments
and import them into a VectorCAST Project.

Before you start: The basic Enterprise Unit Testing example is built using any Unit Testing
Environments you created previously. If there are no existing environments, the example will create
a new unit test environment using the Tutorial for C.

For our example, we will first reset the examples on the Examples page and then import the C, C++,
and Ada Unit Testing environments.

To set up our VectorCAST project, go to the VectorCAST Examples page and select theReset
Examples link located at the bottom of the page.This removes all of the example environments from
your build directory, and gives us a clean directory.

Next we will create our unit environments. Click to run the example Tutorial for C located under the
C Unit Testing column. A green check mark is displayed next to it when the build is complete. Return to
the VectorCAST Examples page and click on the Tutorial for Ada and the Tutorial for C++ examples so
that each also displays a green check mark:

Rev: 3a4ade2 VectorCAST/Analytics User's Guide for VectorCAST 2021



CREATE A VECTORCAST PROJECT 9

Finally, we create our VectorCAST Project. Navigate to the VectorCAST Examples page and under the
Enterprise Unit Testing column, select Enterprise Unit Testing Example. Alternatively, from the
Menu Bar, you can select Help =>Example Environments =>Enterprise Testing =>Enterprise
Unit Testing Example. VectorCAST will automatically build the VectorCAST Project using the Unit
Testing environments you created previously.

Once the project completes building, a VectorCAST Enterprise Testing Example summary page is
provided for you in theMDI Window. Refer to this page to learnmore about basic VectorCAST project
concepts, and use the provided hyperlinks on the right to interact with your project.

In the Project Tree you will now see the enterprise_testing_demo project displayed. Note that a Test
Suite has been created which contains each of the environments. Expand the Project Tree to see the
individual Environments. Next, you will execute all of the tests.

Rev: 3a4ade2 VectorCAST/Analytics User's Guide for VectorCAST 2021



EXECUTE ALL TESTS 10

Execute All Tests
To execute all of the tests in the enterprise_testing_demo project, right-click on the Project Name
(enterprise_testing_demo) and select Execute from the context menu.

You can follow the execute process in theManage Status viewer which opens in theMDI Window. As
test cases are executed data is stored in a SQL database and used to generate reports showing testing
status and trends, making it easy to analyze regression trends.

The Status Panel updates to display testing status. On the status panel you will see status for the
Environment Build, Test Execution and Statement Coverage. Hover over the Statement Coverage bar
to see a pop-up of the Build and Coverage details.

Rev: 3a4ade2 VectorCAST/Analytics User's Guide for VectorCAST 2021



START ANALYTICS FROM VECTORCAST 11

Start Analytics From VectorCAST
To launch the Analytics Server, open a DOS command prompt by selecting the Command Prompt icon

from the Toolbar. From the command line, enter:

%VECTORCAST_DIR%/vcdash -p enterprise_testing_demo

To open the Analytics Dashboard, first open a web browser and enter the web address:
localhost:8128. The dashboard opens in the web browser.

Understanding the Analytics Dashboard
For the purposes of our discussion, we have selected to view themetrics for the source file
c/manager.c by clicking on the link in the Project Source Code Tree.

The Analytics Dashboard is composed of threemain areas:

Rev: 3a4ade2 VectorCAST/Analytics User's Guide for VectorCAST 2021



UNDERSTANDING THE ANALYTICSDASHBOARD 12

> Key Metrics
> Project Source Code Tree
> Metrics for selected source file(s)

Key Metrics
Key Metrics are project-widemetrics displayed in the top bar of the dashboard, providing an at-a-glance
view of the size, complexity and testing completeness of the project. Metrics include:

> Functions - total number of functions in the project
> Statements - total number of statements in the project
> Statement Coverage - percentage of statements covered in the project
> Avg. Complexity/Function - the average code complexity, or V(g), per function
> Static Analysis Issues - total number of static analysis issues in the project
> Comment Density - the percentage of comments to effective lines of code

The Key Metrics are functional buttons which control the sorting and display of the project's Source
Code Tree. In our example, theStatements button is selected, and the source code files are listed in
the Tree showing those having the greatest number of statements at the top.

Rev: 3a4ade2 VectorCAST/Analytics User's Guide for VectorCAST 2021



UNDERSTANDING THE ANALYTICSDASHBOARD 13

Source Code Tree
The Source Code Tree lists the source files and functions associated with the project. The selections
made in the Source Code Tree control the set of functions used to calculate themetrics displayed in the
dashboard. Metrics can be displayed for the entire project, or all the way down tometrics for an
individual function.

The data displayed in the right column of the Source Code Tree is associated with the selected Key
Metric. Select theStatement Coverage button, and note that the right column then shows the
percentage of statement coverage achieved, listed from lowest to highest percentage.

Note that the Source Code Tree uses an icon beside a file name and an icon beside a function
name. Clicking on a file name icon will open the file's source code in a Viewer. Clicking on a function
name icon will open the file's source code in a Viewer and will jump to the function's location in the
code.

Metrics Display
Metrics are displayed in the right of the browser for the file or files selected in the Source Code Tree. In
our example, we have selected the single file manager.c, and the dashboard displays themetrics
associated with that file.

The top boxes provide theMetrics and Testing data for the selected file, manager.c. When Static
Analysis data is available, a third box is provided.

Rev: 3a4ade2 VectorCAST/Analytics User's Guide for VectorCAST 2021



UNDERSTANDING THE ANALYTICSDASHBOARD 14

Below the boxes two treemaps are displayed for the file manager.c, one for Statements vs. Coverage
and one for Complexity vs. Coverage. Each functionmaps to a box in the treemap. Hovering over a box
displays the underlying data.

The size of the boxes within the treemaps reflects the number of statements or level of complexity of
the functions. Functions with a large number of statements or high complexity will be larger in size.

Rev: 3a4ade2 VectorCAST/Analytics User's Guide for VectorCAST 2021



UNDERSTANDING THE ANALYTICSDASHBOARD 15

The color of the boxes within the treemap indicates the level of coverage of the functions.

> Green indicates a high level of coverage.
> Red indicates a low level of coverage.
> Gradient shades reflect partial coverage, with less coverage and higher risk as the values

approach red.

Using the example above, we can easily identify that the function Add_Party_To_Waiting_List is a hot
spot which is highly complex and poorly tested. This information is critical in deciding how to best
allocate testing and refactoring resources on a project.

Tabular data is located by scrolling down the browser window. A set of four tables is provided showing
the Highest Complexity listed by file and by function, and the Least Coverage listed by file and by

Rev: 3a4ade2 VectorCAST/Analytics User's Guide for VectorCAST 2021



UNDERSTANDING THE ANALYTICSDASHBOARD 16

function for the selected files. In this example, we have selected to view themetrics for themanager.c
unit. Note that the name of the source file is provided in parentheses to the right of the function name.

Source Code Viewer

Clicking on any of the listed source file names or the icon in either the Source Code Tree or the
Metrics Tables will open the source code in a viewer. Clicking on the icon of a listed function will
open the source file and scroll to the function. Use the button in the Title Bar to close the viewer.

Coverage Viewer
Select one of the following buttons from the upper right of the Source Code Viewer's Title Bar to view
coverage for the source file:

- Opens the Coverage Viewer. This button is only available when the selected
file has covered branches, pairs or statements.
- Opens Klocwork Analysis results. This button is only available when the
selected file has Klockwork Analysis results.

- Closes the Viewer and returns to the Analytics dashboard.

Rev: 3a4ade2 VectorCAST/Analytics User's Guide for VectorCAST 2021



UNDERSTANDING THE ANALYTICSDASHBOARD 17

- Jumps to the next uncovered or partially covered line.

- Jumps to the previous uncovered or partially covered line.

The Coverage Viewer provides an annotated version of the source file, colorized to indicate the
coverage level achieved. Green highlighted code indicates the line is covered. Red highlighted code
indicates the line is not covered. Yellow highlighted code indicates partial coverage for the line. In the
example below, the file manager.c shows Statement coverage:

Icons in the column on the left give additional information regarding coverage. Hover over an icon for
more information. The following icons (in combination with the red, green and yellow line highlighting)
 are used to annotate the coverage level:

For Statement coverage:

- Statement covered

- Statement not covered

For Branch coverage:

- True covered (No false branch)

- True and False covered

- True covered, False not covered

- True not covered, False covered

- Neither True nor False covered

For Merged coverage data:

- All covered

- Not covered

- Partial coverage

Rev: 3a4ade2 VectorCAST/Analytics User's Guide for VectorCAST 2021



CLOSE THE ANALYTICS SERVER 18

Close the Analytics Server
To close the Analytics Server, return to the DOS command prompt, and from the command line enter
Ctrl +C.

Rev: 3a4ade2 VectorCAST/Analytics User's Guide for VectorCAST 2021



Running the Analytics Server



RUNNING ANALYTICS FROM THE COMMAND LINE 20

Running Analytics From the Command Line
To launch the Analytics Server, open a DOS command prompt by selecting the Command Prompt icon

from the Toolbar. The vcdash command is run to launch the Analytics Server. The syntax for
vcdash is as follows:

%VECTORCAST_DIR%/vcdash -p <project.vcm> [options]

Once vcdash launches the Analytics Server from the command line, open the Analytics Dashboard by
first opening a web browser and then entering the web address for the Analytics Server. In our example
the address is: localhost:8128. The dashboard opens in the web browser.

See "Analytics Server Options Reference" on page 22 for more information.

Tracking Trends and Project History
VectorCAST/Analytics has a history tracking system that keeps track of metric values over time. To

Rev: 3a4ade2 VectorCAST/Analytics User's Guide for VectorCAST 2021



TRACKING TRENDS AND PROJECT HISTORY 21

use the history tracking system, youmust set up a history directory and add snapshots to that
directory. Typically, a new history snapshot is saved at the end of every build/test cycle.

Create a History Directory
To create an initial history directory, add the first snapshot using the following command:

%VECTORCAST_DIR%/vcdash -p <project.vcm> --history-dir=<path-to-directory> --
save-history

Run this command after making changes to the project, running tests, or rebuilding to add subsequent
snapshots.

Tip: Ideally, you should integrate Analytics with a build system such as Jenkins by running
vcdash with the --save-history option at the end of every build/test cycle.

View History Trends on the Dashboard
When you have an existing history directory, invoke the Analytics Dashboard to view data trends. Use
the following command:

%VECTORCAST_DIR%/vcdash -p <project.vcm> --history-dir=<path-to-directory>

Clicking the Reload button on the Dashboard reloads the newest snapshot.

The Dashboard reloads data when:

> A new history snapshot is saved
> A history snapshot is removed
> A history snapshot is edited.

Editing History Points
History points can be removed, renamed, or re-stamped with different times. An ID is required tomodify
a history snapshot. Use the following command to list all histories with their IDs:

%VECTORCAST_DIR%/vcdash --history-dir=<path-to-directory> --list-history

Rev: 3a4ade2 VectorCAST/Analytics User's Guide for VectorCAST 2021



ANALYTICS SERVER OPTIONSREFERENCE 22

To name a history snapshot, use the following command. Snapshot names require a string without
spaces.

%VECTORCAST_DIR%/vcdash --history-dir=<path-to-directory> --edit-history=<ID>
--name=<name-of-file>

To re-stamp a timestamp, use the following command. Timestamp format is UNIX epoch time in
seconds (such as the date+%s UNIX command).

%VECTORCAST_DIR%/vcdash --history-dir=<path-to-directory> --edit-history=<ID>
--timestamp=1490207126

To remove a history snapshot, use the following command:

%VECTORCAST_DIR%/vcdash --history-dir=<path-to-directory> --remove-
history=<ID>

Including a Source Archive
By default, histories do not include a source archive. This is helpful if you do not want the source to be
included, or if your source files are very large. This does, however, make the transfer of the history
directory from onemachine to another difficult, since the paths will not match the source installation on
another machine.

To help with this issue, you can save a portable source archive with your snapshot. Note that only one
archive exists in the history directory at a time. The source directory gets overwritten each time you
save a new history.

Note:When using a source archive, coveragemetrics work, but viewing covered/uncovered
lines in the file view is not supported.

To archive the source files used in theManage project along with the snapshot, use the following
command:

%VECTORCAST_DIR%/vcdash --project=<project.vcm> --history-dir=<path-to-
directory> --save-history --include-source

Tip: A good practice is to save the source archive whenever you save a history snapshot.

Analytics Server Options Reference
The following options are available when running vcdash:

Option Description
s[--clients] arg <=5> Themaximum number of clients allowed.
-c [--config] arg The configuration file to use.
[--coverdb] arg Cover database file <cover.db>. Can specify multiple

Rev: 3a4ade2 VectorCAST/Analytics User's Guide for VectorCAST 2021



ANALYTICS SERVER OPTIONSREFERENCE 23

Option Description

cover databases.
[--create-config arg] Create a new configuration in the specified directory.
-d [--dashboard-dir]
arg The dashboard directory.

[--edit-history arg Edit history with the specified ID. Use with --timestamp
or --name.

[--history-dir] arg The history directory.
[--include-source] When saving a history record, include the source files.
[--list-history] Lists all history snapshots in the trend file and their IDs.
[--load-archive] arg Loads the archive file.
[--mangle] Mangle file and function names (not supported with history

at this time).
[--name] arg The history name. Used with --edit-history or --

save-history.
-P [--port] arg (=0) The port the server runs on.
-p [--project] arg A Manage project <.vcm> Can support an aggregate

display of data frommultiple Manage projects. For
example:
vcdash --project <project1> [[--project
<project2>] ...]

The project argument can be specified by any of the
followingmethods:
- <project>
- <project>.vcm

All source files from the projects are displayed in the
Dashboard, and data is merged (except coverage data).

[--remove-history] arg Removes history with the specified ID.
[--run-server] Starts the dashboard server. The default is on unless

editing archives/histories. When using --save-archive
or --save-history, the server does not start by default.
This flag forces it to run.

[--save-archive] arg Saves the archive file.
[--save-history] Adds a loaded/saved archive into the directory specified by

--history-dir.
[--single-license-
fallback]

If there are not enough client licenses available, try again
with one license.

Rev: 3a4ade2 VectorCAST/Analytics User's Guide for VectorCAST 2021



ANALYTICS SERVER OPTIONSREFERENCE 24

Option Description
[--source-archive] Saves a source archive when saving a history snapshot.

Replaces the existing archive in the history directory.
[--timestamp] arg The history timestamp. Used with --edit-history or -

-save-history.
[--vcdb] arg vcshell database file <.vcdb>. Can specify multiple

databases. Note that when using a vcshell database you
must apply the addmetrics vcutil command in order to
get results in Analytics.

Rev: 3a4ade2 VectorCAST/Analytics User's Guide for VectorCAST 2021



Configuring the Analytics Server



CREATING A NEW CONFIGURATION 26

Creating a New Configuration
If you want to create several dashboards or customize server setup, themost convenient way is to
create andmodify a configuration directory. Once you create your configuration, you can then pass it as
a -c argument when you invoke vcdash from the command line.

Create a new configuration using the --create-config arg option. This option creates a new
custom configuration directory in the specified directory. The directory may bemodified as needed for
your configuration. For example:

%VECTORCAST_DIR%/vcdash --create-config=vcdash_config

The vcdash command takes a -c argument that passes in a JSON configuration file. The
configuration file is a single object which contains global settings and three groups of child objects:
Server, Filter, and Plugins. If you do not specify the configuration file, vcdash uses the default values
provided in the tables below.

Global Settings

Setting Type Default Description

dashboard string/path (install) The directory to find dashboards. By
default, this uses the vcdash
installation directory.

Server Group Settings

Setting Type Default Description

host string "0.0.0.0" Valid host strings to contact server.
"0.0.0.0" means accept any string or
IP that maps to the server.

port int 8128 Port on which to host the server. Make
sure you have permission for the port
(Linux) and open up any firewalls.

Filter Group Settings
The Filter Group is an array of filters, which are objects that explicitly include or exclude functions from
the Dashboard. If any allowlists are defined, no files outside the allowlist are included. Analytics applies
allowlists before denylists, but otherwise applies all filters in the order specified in the config file. Each
filter has two fields.

Setting Type Default Description

kind string required "allowlist" or "denylist"

items array required An array of regular expressions to be
allowlisted or denylisted.

Rev: 3a4ade2 VectorCAST/Analytics User's Guide for VectorCAST 2021



CREATING A NEW CONFIGURATION 27

Regular expressions follow python regular expression syntax, and arematched against functions in the
format file_path/function_name. For example, a function foo() in file
/home/users/sdf/main.c is keyed as /home/users/sdf/main.c/foo.

To include only functions in main.c, you could create the following filter:

{
  "kind" : "allowlist",
  "items" : [
   "/home/users/sdf/main\.c/.*"
 ]
}

Plugin Group Settings
The Plugin Groupmay consist of any number of settings for plugins created by VectorCAST support
personnel or created by customers. Due to their unique nature, these settings are not listed here. The
setting is keyed off the plugin name, and the value is an object consisting of that plugin's settings.

For example, the following enables the mydata plugin and configures its foo setting to be 42:

"mydata" : {
   "foo" : 42
}

Formore information on plugins, see "AddingMetrics With Plugins" on page 40.

Example Configuration File
In the following example configuration file, the host can be reached by http://vectortools on port
80 (assuming IT set up DNS to point to that location). vcdash will load the mydata plugin and pass the
foo setting with the value 42, and load only data for functions in /home/users/sdf/main.c.

{
  "dashboard": "demo",
  "server": {
    "host": "vectortools",
    "port": 80,
    "session_timeout" : 5
},
  "plugins": {
    "mydata": {
      "foo": 42
    }
},
  "filters": [

{
      "kind": "allowlist",
      "items": { "/home/users/sdf/main\.c/.*"]
    }
  ]
}

Rev: 3a4ade2 VectorCAST/Analytics User's Guide for VectorCAST 2021



Customizing the Analytics Dashboard



CREATE A CUSTOM DASHBOARD 29

Create A Custom Dashboard
VectorCAST/Analytics allows users to save a Dashboard, modify a Dashboard, or create a new
Dashboard and then import the custom Dashboard.

To save a Dashboard, with a Dashboard open, choose theSave Configuration button in the upper
right to export the current Dashboard to a JSON file. By default, it is named local_
dashboard.vdash. You can then edit this Dashboard file to suit your needs. It is recommended you
run it through a JSON validator.

When ready to import your custom Dashboard, select the Load Configuration button to import the
local_dashboard.vdash file. It is then listed in the drop-downmenu as "Local Dashboard
Settings."

When using theSave Configuration / Load Configuration buttons on the dashboard, note that you
cannot configure the server or set the configuration. If you want to make permanent changes, we
recommend that you run the product from the command line.

For example, if you want to make several dashboards, create a configuration directory using the --
create-config arg option (see "Creating a New Configuration" on page 26). This option creates a
new custom configuration directory in the specified directory. You can then copy andmodify any of the
.vdash files inside that directory to create new dashboards.

Rev: 3a4ade2 VectorCAST/Analytics User's Guide for VectorCAST 2021



DASHBOARD FILE FORMAT 30

Dashboard File Format
The Dashboard files define the layout of the page and are located in
%VECTORCAST_DIR%/python/vector/apps/Analytics/static/dashboards.

Tomake your own custom dashboard file, copy the demo.vdash file located in the /dashboards
directory and specify a full path to the new dashboard in the configuration's dashboard setting.
Alternatively, youmay keep the copy inside the /dashboards directory and specify the file name
without the .vdash extension.

The tables below describe the settings for the Dashboard file.

Top-Level Settings

Setting Type Description

version string Version of the vdash file. Currently unused.

organization metric Organization field to use for grouping files
under a hierarchy.

head_metrics list of metrics Themetrics to use in the header and sort by
in the hierarchy. You can have amaximum
of 6 headmetrics.

display_
requirements

list of strings The tags whichmust be satisfied for this
dashboard to load or show in the drop-
down.The following tags exist by default:
• has_lint
• has_klocwork
• has_statement_coverage
• has_branch_coverage
• has_requirements

You can set additional tags using plugins.

dashboard object See "Dashboard Settings" table below.

Dashboard Settings
The Dashboard setting is a complex object that defines the overall dashboard. Its top-level settings are:

Setting Type Description

name string Currently unused.

description string Currently unused.

rows list of objects See "Rows Settings" table below.

Rows Settings
The Rows setting is a list of complex objects that define the rows in the Dashboard. Rows are

Rev: 3a4ade2 VectorCAST/Analytics User's Guide for VectorCAST 2021



DASHBOARD FILE FORMAT 31

displayed in the order in which they are defined, from top to bottom. Its top-level settings are:

Setting Type Description

name string Currently unused.

widgets list of objects See "Widgets Settings" table below.

Widgets Settings
TheWidgets setting defines the list of widgets which are displayed on the Dashboard. Settings vary
depending on the display setting. Widgets are displayed in the order in which they are defined, from left
to right. Widget settings are:

Setting Type Description

name string Title over the widget.

description string Mouseover tooltip for the title.

widget_type string The type of widget to display and the fields it
supports (other than name and description).

• summary
     ◦ grouping
     ◦ metrics (array)
• treemap
     ◦ grouping
     ◦ metrics (array of length 2)
     ◦ colors
     ◦ color_scale
• tablegroup
     ◦ grouping
     ◦ metrics (array)
     ◦ size
     ◦ hide zeroes
• piechart
     ◦ grouping
     ◦ metrics (string, not an
array)
• barchart
     ◦ grouping
     ◦ metrics (string, not an
array)

grouping metric Themetric that defines how to group the
data. For most currently used widgets, this
is "func", meaning group data by each
individual function.

metrics metric or list of
metrics

For most widgets, this is a string that

Rev: 3a4ade2 VectorCAST/Analytics User's Guide for VectorCAST 2021



DASHBOARD FILE FORMAT 32

Setting Type Description

defines themetric we want to reduce the
group down by. Somewidgets, such as
treemaps and summaries, display 2 or more
reductions; in which case, the setting is
defined as a list of metrics. For example:

• In a table, a grouping of func and a
metrics of tests_failed groups by
function, and provides their summed tests_
failed.

• In a table, a grouping of group_file
and ametrics of tests_failed groups by
file, and provides their summed tests_
failed.

• In a bar chart, a grouping of group_
complexity and ametrics of tests_
failed groups by how complex the
function is, then displays a bar chart of each
group's summed tests_failed.

color_scale list of ints or
relative

For widgets that are showing relative
differences, such as a treemap, the system
needs to know what the lowest and highest
values are. This setting defines them in an
array as [lowest,highest].

Using relative sets the lowest and
highest value to the lowest and highest in
the set. Treemaps are not currently
supported.

colors string or list of
strings

Specifies the color template for the widget in
the format template.size, where
template is a named template, and size
is the number of color steps.
For example, Reds.8. The system will
scale your input across the steps of color.

See "Color Templates" on page 36 for
details.

Alternatively, you can provide a list of
strings that are colors in hex format:
["#FF0000", "#00FF00", "#0000ff"].

hide_zeroes boolean Ignore groups with the value 0.

Rev: 3a4ade2 VectorCAST/Analytics User's Guide for VectorCAST 2021



SUPPORTED GROUPS 33

Setting Type Description

display_
requirements

list of strings The conditions whichmust be satisfied for
this widget to display. See Dashboard
display_requirements above.

Supported Groups
The following groups are available by default. To define new groups, youmust write a plugin. See
"AddingMetrics With Plugins" on page 40 for more information.

Group Description

function Default. Groups data by each function.

group_file Groups data by each file.

group_
complexity

Groups data by each function's complexity (<5, <11, <21, <51,
>50)

group_coverage Groups data by each function's level of coverage (0%, <25%,
<50%, <75%, <100%, 100%)

Supported Metrics
Supportedmetrics are provided in the following tables. The "Granularity" column identifies the individual
records whichmake up themetric (file, function, or requirement).

When selecting functions in the dashboard, widgets usingmetrics with file or requirement granularity
display that object's value. When a selection encompasses a number of functions, the data is
aggregated over the unique set of files or requirements those functions are related to.

Standard Metrics

Metric Granularity Description

avg_complexity function Average complexity per function
avg_covered_pct function Average statement coverage per

function
blank_lines file Number of blank lines (requires vcdb

after using the addmetrics
command)

branches function Number of branches
code_lines file Number of code lines (requires vcdb

after using the addmetrics
command)

comment_lines file Number of comment lines(requires
vcdb after using the addmetrics

Rev: 3a4ade2 VectorCAST/Analytics User's Guide for VectorCAST 2021



SUPPORTEDMETRICS 34

Metric Granularity Description

command)
comment_source_ratio file Comment lines / code lines (requires

vcdb after using the addmetrics
command)

complexity function Complexity
control_flow_total function Total control flows
count function Number of functions
coverable_functions function Number of coverable functions
covered_branches function Number of fully-covered branches
covered_function_calls function Number of covered function calls
covered_functions function Number of covered functions
covered_pct function Statement coverage
covered_statements function Number of statements covered
expected_total function Total expected values
failed_control_flow function Failed control flows
failed_expected function Failed expected values
file_count file Number of files
file_without_test_
count

file Number of files without tests

function_call_coverage function Percentage of covered function calls
function_calls function Number of function calls
function_coverage function Percent of covered functions
functions_without_
coverage

function Number of functions without coverage

mcdc_branches function Number of MC/DC branches
(conditions)

mcdc_covered_branches function Number of fully-coveredMC/DC
branches

mcdc_covered_pairs function Number of fully-coveredMC/DC pairs
mcdc_pairs function Number of MC/DC pairs
partial_branches function Number of branches with both

true/false coverable, but only one or the
other is covered

pct_covered_branches function Percentage of fully-covered branches
pct_functions_without_
coverage

function Percentage of functions without
coverage

pct_functions_without_
tests

function Percentage of functions without tests

Rev: 3a4ade2 VectorCAST/Analytics User's Guide for VectorCAST 2021



SUPPORTEDMETRICS 35

Metric Granularity Description

pct_mcdc_covered_
branches

function Percentage of fully-coveredMC/DC
branches

pct_mcdc_covered_pairs function Percentage of fully-coveredMC/DC
pairs

pct_remaining_tests function Testing completeness
pct_requirements_
passed

requirement Requirements_passed / requirements

pct_requirements_
tested

requirement Percentage of tested requirements vs.
number of requirements in the
repository

remaining_tests function Tests needed
requirements requirement Number of requirements tested
requirements_passed requirement Number of requirements tested where

all tests pass
signals function Total signals
statements function Number of statements
tests_failed function Tests failed
tests_passed function Tests passed
tests_passed_pct function Percentage of passed tests
tests_skipped function Tests skipped
tests_total function Number of tests
tests_with_expected function Tests with expected values
tests_with_expected_
and_reqs

function Tests with expected values and
requirements

tests_with_expected_
no_reqs

function Tests with expected values but no
requirements

total_lines file Number of lines (requires vcdb after
using the addmetrics command)

uncovered_function_
call_pct

function Percentage of uncovered function calls

uncovered_function_
calls

function Number of uncovered function calls

uncovered_function_pct function Percentage of uncovered functions
uncovered_functions function Number of uncovered functions
uncovered_pct function Percentage of statements not covered
uncovered_statements number Number of statements not covered
unit_tests function Number of unit tests

Rev: 3a4ade2 VectorCAST/Analytics User's Guide for VectorCAST 2021



COLOR TEMPLATES 36

Static Analysis Plugin Metrics

Metric Granularity Description

klocwork_avg_issues_
per_function

function Average number of Klocwork issues per
function

klocwork_clean_
functions

function Total number of functions with zero
Klocwork issues

klocwork_errors function Klocwork errors
klocwork_info function Klocwork info
klocwork_misra function Klocwork MISRA issues
klocwork_pct_clean_
functions

function Percentage of functions with zero
Klocwork issues

klocwork_total_issues function Klocwork total issues
klocwork_warnings function Klocwork warnings
lint_avg_issues_per_
function

function Average number of Lint issues per
function

lint_clean_functions function Total number of functions with zero Lint
issues

lint_errors function Lint Errors
lint_info function Lint Electives
lint_misra function Lint MISRA Issues
lint_pct_clean_
functions

function Percentage of functions with zero Lint
issues

lint_total_issues function Lint Issues
lint_warnings function Lint Warnings

Color Templates
The color template is specified in the Dashboard file. SeeWidget Settings > "colors" on page 32 for
more information.

Rev: 3a4ade2 VectorCAST/Analytics User's Guide for VectorCAST 2021



COLOR TEMPLATES 37

Rev: 3a4ade2 VectorCAST/Analytics User's Guide for VectorCAST 2021



COLOR TEMPLATES 38

Rev: 3a4ade2 VectorCAST/Analytics User's Guide for VectorCAST 2021



COLOR TEMPLATES 39

Rev: 3a4ade2 VectorCAST/Analytics User's Guide for VectorCAST 2021



Adding Metrics With Plugins



ANALYTICS PLUGIN SYSTEM 41

Analytics Plugin System
VectorCAST/Analytics has a Plugin system which allows you to attach data to files or functions and
define new metrics and groups. Plugins allow you to:

> Attach data to files and functions
> Define new metrics
> Define new groups
> Add tags to control what is and is not displayed on a Dashboard

Note: Contact the VectorCAST Technical Support team for additional support in creating your
specific plugins:
Email: support@vector.com
Web: www.vector.com/support

Rev: 3a4ade2 VectorCAST/Analytics User's Guide for VectorCAST 2021



Index: analytics – server options

Index

analytics

close analytics server 18

coverage viewer 16

create new configuration 26

custom dashboard 29

dashboard file format 30

example configuration file 27

introduction 6

key metrics 12

metrics display 13

open dashboard 11, 20

plugins 41

project-widemetrics 12

server options 22

source code tree 13

start from command line 20

treemaps 14

trends and history 20

understanding the dashboard 11

view source code 16

dashboard

color templates 36

create custom 29

file format 30

plugin metrics 36

rows settings 30

settings 30

standardmetrics 33

supported groups 33

supportedmetrics 33

top level settings 30

widgets settings 31

enterprise testing 8

build/execute 10

create a project 8

environment groups 9

history

create history directory 20-21

edit history points 21

include a source archive 22

view trends 21

project tree 9

server configuration 26

example configuration file 27

filter group settings 26

global settings 26

group settings 26

plugins group settings 27

server options

--clients 22

--config 22

--coverdb 22

--create-config 23

--dashboard-dir 23

--edit-history 23

--history-dir 23

--include-source 23

--list-history 23

--load-archive 23

--mangle 23

--name 23

--port 23

--project 23

--remove-history 23

--run-server 23

--save-archive 23

--save-history 23

--single-license-fallback 23

--source-archive 24

--timestamp 24

--vcdb 24

42



Index: starting VectorCAST – VectorCAST

starting VectorCAST 8

status panel 10

test suite 9

trends and project history 20

VectorCAST

starting 8

43


	Introduction to Analytics
	VectorCAST/Analytics

	Quick Start
	Getting Started
	Create a VectorCAST Project
	Execute All Tests
	Start Analytics From VectorCAST
	Understanding the Analytics Dashboard
	Key Metrics
	Source Code Tree
	Metrics Display
	Source Code Viewer
	Coverage Viewer

	Close the Analytics Server

	Running the Analytics Server
	Running Analytics From the Command Line
	Tracking Trends and Project History
	Create a History Directory
	View History Trends on the Dashboard
	Editing History Points
	Including a Source Archive

	Analytics Server Options Reference

	Configuring the Analytics Server
	Creating a New Configuration
	Global Settings
	Server Group Settings
	Filter Group Settings
	Plugin Group Settings
	Example Configuration File


	Customizing the Analytics Dashboard
	Create A Custom Dashboard
	Dashboard File Format
	Top-Level Settings
	Dashboard Settings
	Rows Settings
	Widgets Settings

	Supported Groups
	Supported Metrics
	Standard Metrics
	Static Analysis Plugin Metrics

	Color Templates

	Adding Metrics With Plugins
	Analytics Plugin System

	Index

